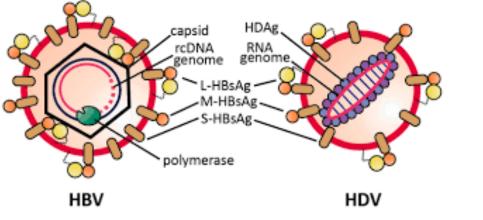


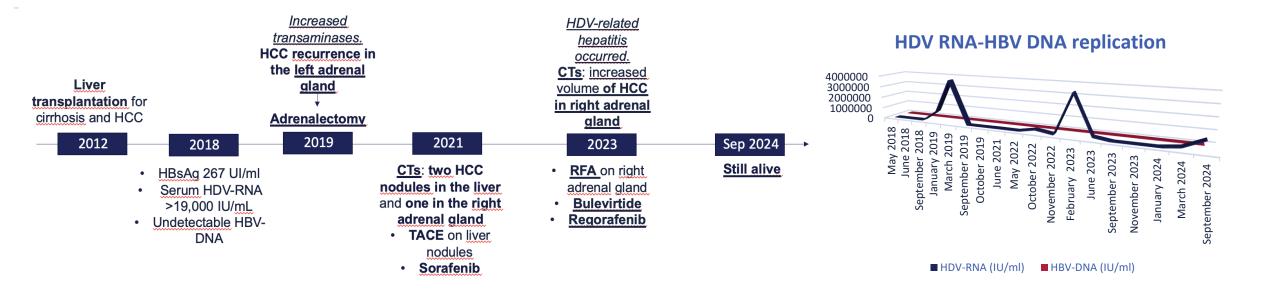
Hepatitis delta virus (HDV) replication through HBV integrants in HCC recurrence after liver transplantation

Lorenza Di Marco

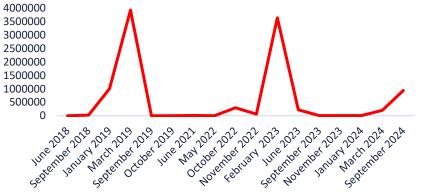


- The undersigned declares that there has been no conflict of interest regarding this presentation in the last 24 months
- The presentation does not contain a discussion of investigational or off-label drugs

Hepatitis Delta Virus

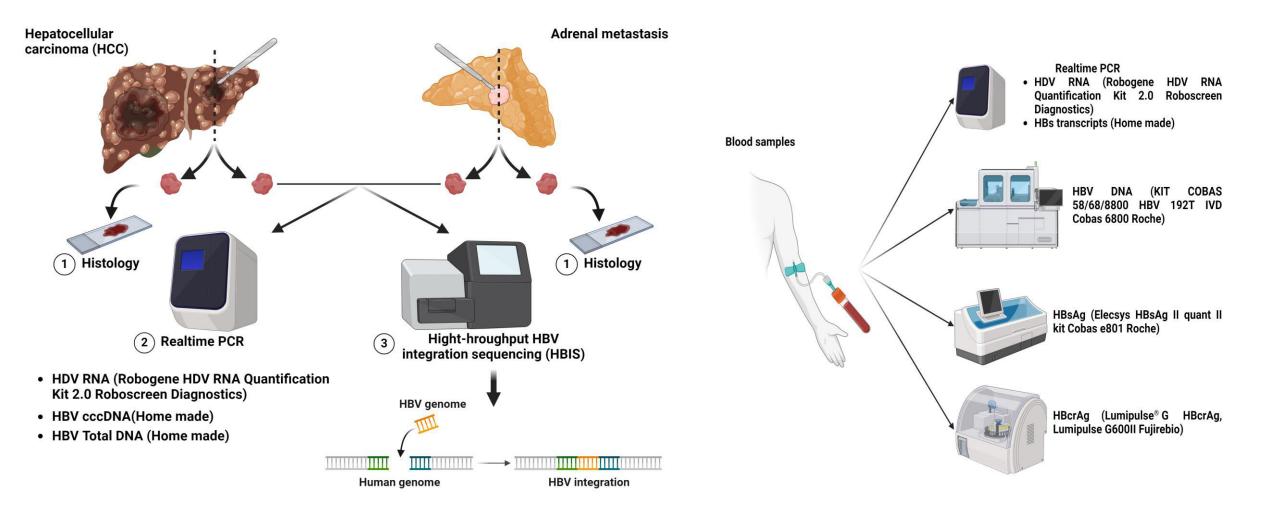

- Hepatitis D Virus (HDV) is a <u>defective</u> RNA virus <u>requiring</u> the helper function of HBV for viral assembly and in vivo transmission.
- HDV is a <u>highly pathogenic</u> virus that causes the least common but most severe and rapidly progressive chronic hepatitis, leading to <u>cirrhosis in about 80%</u> of the cases within 10 years.
- HDV cirrhosis may be a stable disease for years, <u>BUT</u> a high proportion of patients eventually die of hepatic decompensation or hepatocellular carcinoma (HCC) unless they undergo liver transplantation.

A 52 years-old PWID man with HBV, HDV and HIV infection..


Liver Transplantation for cirrhosis and by HCC	n th	Increased ransaminase levels • HCC ecurrence in e <u>left adrenal</u> gland ↓ Irenalectomy		<u>HDV-related</u> <u>hepatitis</u> <u>CTs</u> : increased <u>volume of</u> <u>right adrenal</u> <u>gland</u>	
2012	2018	2019	2021	2023	Sep 2024
•	HBsAg reversion • Serum HDV- RNA >19,000 IU/mL • Undetectable HBV-DNA		<u>CTs</u> : two HCC nodules in the liver and one in the right adrenal gland • TACE on liver nodules • Sorafenib	 <u>RFA</u> on right adrenal gland <u>Bulevirtide</u> <u>Regorafenib</u> 	<u>Still alive</u>

HDV-RNA (IU/ml)

4500000



HBsAg (IU/ml)

Materials and Methods

Molecular virology analyses

Analysis of HCC tissue from the explanted liver (2012)

By real-time PCR: HDV-RNA (88,400 copies/cell), HBV-DNA (0.00001 copies/cell), and cccDNA (0.00008 copies/cell)

Analysis of liver biopsy and serum (2019) by real-time PCR

- HDV RNA intrahepatic level: 3,920,000 copies/cell
- HDV RNA serum level: 214 IU/mL
- HBsAg serum level: 60 IU/mL
- HBcAg, HBV DNA and HBV cccDNA Intrahepatic levels: undetectable

Analysis of HCC metastasis in the left adrenal gland (2019) by real-time PCR

HDV RNA (5.5 copies/cell), total HBV DNA (0.00001 copies/cells), HBV cccDNA (0.00001 copies/cells)

HBV integration breakpoints in the human genome

Total number of HBV integration sites	Liver tumor tissue	Adrenal metastasis
8728	1252	7026

The HBV integration sites were also annotated to analyze their distribution in distinct genomic elements

Human genomic elements	Liver tumor tissue %	Adrenal metastasis %
Gene	315/1252 (25.16)	3783/7026 (53.84)
Exon	57/1252 (4.55)	559/7026 (7.96)
CDS	22/1252 (1.76)	200/7026 (2.85)
Intron	264/1252 (21.09)	3253/7026 (46.30)
mRNA	256/1252 (20.45)	2897/7026 (41.23)
IncRNA	83/1252 (6.63)	1048/7026 (14.92)
pseudogene	16/1252 (1.28)	110/7026 (1.57)
Intergenic	922/1252 (73.64)	3134/7026 (44.61)

Frequency of integrations in coding gene regions

Distribution of breakpoints in the HBV genome

Liver tumor tissue

Adrenal metastasis

HBV genomic regions	Liver tumor tissue (%)	Adrenal metastasis (%)
PreS1/PreS2/S	122/1252 (9.74)	4294/7026 (61.12)
X	1131/1252 (90.34)	2723/7026 (38.76)
PreCore/Core	0/1252 (0.00)	10/7026 (0.14)
pol	3/1252 (0.24)	14/7026 (0.20)

Pathways affected by HBV integrations

Liver tumor tissue Adrenal metastasis

- 123/8728 (1.4%) HBV integrations were in common between liver tumor tissue and adrenal metastasis
- The main pathways affected by HBV integrations

KEGG pathways	Genes	
Cell cycle	 MCM5, minichromosome maintenance complex component 5 PRKDC, protein kinase DNA-activated, catalytic subunit MAD1L1, mitotic arrest deficient 1 like 1 	
Transcriptional misregulation	 CEBPE, CCAAT enhancer binding protein epsilon RUNX1, RUNX family transcription factor 1 	
Insulin signaling pathway	 FASN, fatty acid synthase RPTOR, regulatory associated protein of MTOR complex 1 	
Pathways in cancer	 COL4A1, collagen tupe IV alpha 1 chain RUNX1, RUNX family transcription factor 1 	
MAPK signaling pathway	CACNA1C, calcium voltage-gated channel subunit alpha1 C	
ATP-dependent chromatin remodelling	• EP400, E1A binding protein p400	
TGF-beta signaling pathway	THSD4, thrombospondin type 1 domain containing 4	
DNA replication	• MCM5 , minichromosome maintenance complex component 5	

This case shows that:

- HDV-RNA may replicate in extrahepatic metastases of HCC, as confirmed by decreasedbio HDV-RNA levels after adrenalectomy and RFA on the right adrenal gland.
- HBV-DNA integration in HCC metastases may lead to the production of HBsAg.
- HBsAg production from integrated HBV-DNA in the absence of HBV replication may result in active HDV-RNA replication.
- The association between RFA and Bulevirtide therapy resulted in a partial virological (HDV-RNA: <2 log) and biochemical response.

SPECIAL THANKS

Hepato-pancreato-biliary Surgery and Liver Transplantation Unit - Gastroenterology Unit, Oncology Unit - Infectious Diseases Unit, University Hospital of Modena and Reggio Emilia. Prof F. Di Benedetto, Prof S. Di Sandro, Dr P. Magistri, Dr N. De Maria, Dr A. Pivetti, Prof A. Colecchia, Dr A. Romanzi, Dr A. Spallanzani, Dr Massimiliano Salati, Prof. G. Guaraldi, Dr G. Dolci, Dr G. Ciusa.

Department of Clinical and Experimental Medicine, University Hospital of Messina. Prof T. Pollicino, Prof G. Raimondo, Dr D. Lombardo.

Gastroenterology and Hepatology Unit, Ospedale Maggiore Policlinico, Milan. Prof P. Lampertico, Dr E. Degasperi, Dr M.P. Anolli.

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina.

Dr D. Giosa.

- Progetto SAMOTHRACE Sicilian MicronanoTech Research And Innovation Center
- PRIN: PROGETTI DI RICERCA DI RILEVANTE INTERESSE NAZIONALE Bando 2022 Prot. 2022X2KWRK

Finanziato dall'Unione europea NextGenerationEU

Italiadomani

